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The dynamics of magnetization in the presence of spin-transfer torque was studied. We derived the equation
for the motion of magnetization in the presence of a spin current by using the local equilibrium assumption in
nonequilibrium thermodynamics. We show that, in the resultant equation, the ratio of the Gilbert damping
constant, �, and the coefficient, �, of the current-induced torque called nonadiabatic torque, depends on the
relaxation time of the fluctuating field �c. The equality �=� holds when �c is very short compared to the time
scale of magnetization dynamics. We apply our theory to current-induced magnetization reversal in magnetic
multilayers and show that the switching time is a decreasing function of �c.
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Spin-transfer torque-induced magnetization dynamics
such as current-induced magnetization reversal,1–3 domain-
wall motion,4 and microwave generation5 have attracted a
great deal of attention because of their potential applications
to future nanospinelectronic devices. In the absence of spin-
transfer torque, magnetization dynamics is described by ei-
ther the Landau-Lifshitz �LL� equation6 or the Landau-
Lifshitz-Gilbert �LLG� equation.7 It is known that the LL and
LLG equations become equivalent through rescaling of the
gyromagnetic ratio. However, this is not the case in the pres-
ence of spin-transfer torque. For domain-wall dynamics, the
following LLG-type equation has been studied by several
groups:8–12

�t�M� + v · ��M� = �H � �M� +
�

M
�M� � �t�M� +

�

M
�M�

� ��v · ���M�� , �1�

where M represents the magnetization, v is the velocity, � is
the gyromagnetic ratio, and � is the Gilbert damping con-
stant. The second term on the left-hand side represents the
adiabatic contribution of spin-transfer torque. The first and
the second terms on the right-hand side are the torque due to
the effective magnetic field H and the Gilbert damping. The
last term on the right-hand side of Eq. �1� represents the
current-induced torque called “nonadiabatic torque” or sim-
ply the � term. The directions of the adiabatic contribution of
spin-transfer torque and nonadiabatic torque are shown in
Fig. 1�a�.

As shown by Thiaville et al., the value of the coefficient �
strongly influences the motion of the domain wall.8 How-
ever, the value of the coefficient � is still controversial, and
different conclusions have been drawn from different
approaches.11–18 For example, Barnes and Maekawa showed
that the value of � should be equal to that of the Gilbert
damping constant � to satisfy the requirement that the relax-
ation should cease at the minimum of electrostatic energy,
even under particle flow. Kohno et al.12 performed micro-
scopic calculations of spin torques in disordered ferromag-
nets and showed that the � and � terms arise from the spin-
relaxation processes and that ��� in general. Tserkovnyak

et al.13 derived the � term using a quasiparticle approxima-
tion and showed that �=� within a self-consistent picture
based on the local-density approximation.

In the current-induced magnetization dynamics in the
magnetic multilayers shown in Fig. 1�b�,19–21 the nonadia-
batic torque exerts a strong effect and therefore affects the
direct current voltage of the spin torque diode, as shown in
Refs. 20 and 21. The magnetization dynamics of the free
layer, S2, has been studied by using the following LLG-type
equation:

�tS2 −
I

e
g��S2 � S1� � S2 = �H � S2 +

�

S2
S2

� �tS2 + �IS2 � S1, �2�

where I is the charge current density, g is the amplitude of
the spin torque introduced by Slonczewski,1 � is the Dirac
constant, and � is the magnitude of the nonadiabatic torque,
which is sometimes called the fieldlike torque.20,21

FIG. 1. �a� The direction of the magnetization M, the adiabatic
contribution of spin-transfer torque, �v ·��M, and the � term,
M� ��v ·��M�, are shown. The direction of the velocity v is indi-
cated by the dotted arrow. �b� The magnetic multilayers, in which
the pinned and the free layers are separated by a nonmagnetic
spacer layer are schematically shown. The magnetization vectors of
the pinned and free layers are represented by S1 and S2, respec-
tively. The effective magnetic field, to which S2 is subject, is rep-
resented by H. �c� The direction of the magnetization of the free
layer, S2, the spin-transfer torque �S2�S1��S2, and the nonadia-
batic torque, S2�S1, are shown. The direction of S1 is indicated by
the dotted arrow.
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In this Rapid Communication, we study the magnetization
dynamics induced by spin-transfer torque in the framework
of nonequilibrium thermodynamics. We derive the equation
of motion of the magnetization in the presence of a spin
current by using the local equilibrium assumption. In the
resultant equation, the Gilbert damping term and the � term
are expressed as memory terms with the relaxation time of
the fluctuating field �c. We show that the value of the coef-
ficient � is not equal to that of the Gilbert damping constant
� in general. However, we also show that the equality
�=� holds if �c	1 / ��H�. We apply our theory to the
current-induced magnetization reversal in magnetic multilay-
ers and show that the switching time is a decreasing function
of �c.

Let us first briefly introduce the nonequilibrium statistical
theory of magnetization dynamics in the absence of spin
current.22 The LLG equation describing the motion of mag-
netization M under an effective magnetic field H is given by

�tM = �H � M +
�

M
M � �tM . �3�

The equivalent LL equation is expressed as

�tM =
�

1 + �2H � M −
��

M�1 + �2�
M � �M � H� . �4�

The Langevin equations leading to Eqs. �3� and �4� by taking
the ensemble average of magnetization m are

�tm = �Htot � m , �5�

�t
H = −
1

�c
�
H − �sm� + R�t� , �6�

where the total magnetic field Htot is the sum of the effective
magnetic field H and the fluctuating magnetic field 
H, and
�s is the susceptibility of the local magnetic field induced at
the position of the spin. The Fokker-Planck equation corre-
sponding to the Langevin equations guarantees approach to
thermal equilibrium.22 According to Eq. �6� the fluctuating
magnetic field 
H relaxes toward the reaction field �sm
with the relaxation time �c. The random field R�t� satisfies
�R�t��=0 and the fluctuation-dissipation relation,
�Ri�t�Rj�t���= 2

�c
�skBT
i,j
�t− t��, where kB is the Boltzmann

constant, T is the temperature, �¯� is the ensemble average,
and i , j=1,2 ,3 are the Cartesian components. It was shown
that Eqs. �5� and �6� lead to Kawabata’s extended Landau-
Lifshitz equation23 derived by the projection operator
method.22 In the Markovian limit, i.e., �c	1 / ��H�, we can
obtain the LLG Eq. �3� and the corresponding LL Eq. �4�
with �=��c�sM.22 The spin relaxation vanishes in the limit
of �c→0 since it is induced by the transition of spin states
during the time �c.

In order to consider the flow of spins, i.e., spin current, we
introduce the positional dependence. Since we are interested
in the average motion, it is convenient to introduce the mean
velocity of the carrier, v. The average magnetization,
�m�x , t��, is obtained by introducing the positional depen-
dence and taking the ensemble average of Eq. �5�. In terms
of the mean velocity, the ensemble average of the left-hand

side of Eq. �5� leads to �t�m�+ �v ·���m�. Assuming
�
H�m���
H�� �m�, which is applicable when the ther-
mal fluctuation is small compared to the mean value, we
obtain,

�t�m� + �v · ���m� = ��Htot�x,t�� � �m�x,t�� . �7�

The mean magnetization density is expressed as �M�x , t��
=��x , t��m�x , t��, i.e., by the product of the scalar and vecto-
rial components both of which depend on the position of the
spin carrier at time t. The spin carrier density, which is the
scalar component of spin density, satisfies the continuity
equation,

�t��x,t� + � · �v��x,t�� = 0. �8�

By multiplying the left-hand side of Eq. �7� by ��x , t� and by
using the continuity Eq. �8�, the closed expression for the
mean magnetization is obtained as24

���t�m� + v · ��m�� = �t��m� + �m� � · v� + �v · ��m�

= �t�M� + Divv�M� , �9�

where Divv�M� is defined by

Divv�M� = �
i=1

3
�vi�M�

�xi
= �M��� · v� + �v · ���M� . �10�

By multiplying the right-hand side of Eq. �7� by ��x , t� and
by using Eq. �9�, we obtain,

�t�M� + Divv�M� = ��H + �
H�� � �M� . �11�

Equation �11� takes the standard form of a time evolution
equation for extensive thermodynamical variables under
flow.24 The average of Eq. �6� with the positional dependence
is given by

�t�
H�x,t�� = −
1

�c
��
H�x,t�� − ��M�x�t�,t��� , �12�

where x�t� is the mean position at time t of the spin carrier,
which flows with velocity v=�tx�t�. For simplicity, �=�s /�
is assumed to be a constant independent of the position.
Equations �11� and �12� constitute the basis for the subse-
quent study of magnetization dynamics in the presence of
spin-transfer torque.

The formal solution of Eq. �12� is expressed as

�
H�x,t�� =
�

�c
	

−

t

��t − t���M�x�t��,t���dt�, �13�

where the memory kernel is given by ��t�=exp�−t /�c�. Us-
ing partial integration, we obtain,

�
H�x,t�� = ��M� − 	
−

t

��t − t����Ṁ�t���dt�, �14�

where the explicit expression for Ṁ�t�=Ṁ�x�t� , t� is given by
the convective derivative,

Ṁ�t� = �tM�x�t�,t� + �v · ��M�x�t�,t� . �15�

Substituting Eq. �14� into Eq. �11�, we obtain the equation of
motion for the mean magnetization density,
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�t�M� + Divv�M� = �H � �M� + �	
−

t

dt���t − t����M�t��

� �Ṁ�t��� . �16�

Equation �16� supplemented by Eq. �15� is the principal re-
sult of this Rapid Communication.

When the relaxation time of the fluctuating field, �c, is
very short compared to the time scale of the magnetization
dynamics, the memory kernel is decoupled and Eq. �16� can
be written as

�t�M� + Divv�M� = �H � �M� +
�

M
�M� � �Ṁ� , �17�

where �=��c�M is the Gilbert damping constant. We sub-
stitute the explicit form of the convective derivative, Eq.
�15�, into Eq. �17�. Moreover by using Eq. �10�, we obtain
the following LLG-type equation:

�t�M� + �M��� · v� + �v · ���M� = �H � �M� +
�

M
�M�

� �t�M� +
�

M
�M� � ��v · ���M�� . �18�

If � ·v=0, Eq. �18� reduces to Eq. �14� of Ref. 11, which is
derived by replacing the time derivative of magnetization
�tM on both sides of the LLG Eq. �3� by the convective
derivative �tM+ �v ·�� ·M. The term �M��� ·v� appears not
on the right-hand side of Eq. �18� but on the left-hand side,
which means we cannot obtain Eq. �18� using the same pro-
cedure used in Ref. 11. As shown in Refs. 11 and 14, Eq.
�18� with �M��� ·v�=0 leads to a steady-state solution in the
comoving frame, �M�t��= �M0�x−vt��, where �M0�x�� de-
notes the stationary solution in the absence of domain-wall
motion. However, if �M��� ·v��0, the steady-state
solution may break the Galilean invariance. The situation
�M��� ·v��0 can be realized, for example, in magnetic
semiconductors,25,26 where the spin carrier density is spa-
tially inhomogeneous, i.e., ���0.

The last term of Eq. �18� represents the nonadiabatic com-
ponent of the current-induced torque, which is also known as
the “� term.” By comparing Eq. �18� with Eq. �1�, one can
see that the coefficient of the last term is equal to the Gilbert
damping constant �. However, Eq. �18� is valid when the
relaxation time of the fluctuating field, �c, is very short com-
pared to the time scale of the magnetization dynamics. It
should be noted that the general form of the equation de-
scribing the magnetization dynamics is given by Eq. �16�
where the last term on the right-hand side is the origin of the
� and � terms. It is possible to project the torque represented
by the memory function onto the direction of the � and �
terms. This projection leads to ��� in general.

In order to observe the effect of �c on the magnetization
dynamics we applied our theory to the current-induced mag-
netization switching in the magnetic multilayer shown in Fig.
1�b�. We assumed that the fixed and free layers are single
domain magnetic layers acting as a large spin characterized
by the total magnetization vector defined as Si=
dV�Mi�,
where i=1�2� for the fixed �free� layer and 
dV denotes the

volume integration over the fixed �free� layer. Both the mag-
netization vector of the fixed layer S1 and the effective mag-
netic field, H, acting on the free layer lie in the plane.

Integrating Eqs. �11� and �12� over the volume of the free
layer, we obtain the equations:

�tS2 +	 dSn̂ · J = ��H + �
H�� � S2, �19�

�t�
H� = −
1

�c
��
H� − �VS2� , �20�

where J=v � �M� is the spin current tensor 
dS represents
the surface integration over the free layer, n̂ is the unit nor-
mal vector of the surface, and �V=� /V is defined by the
volume of the free layer V.

The same procedure used to derive Eq. �16� yields

�tS2 +	 dSn̂ · J = �H � S2 + �	
−

t

dt���t − t���VS2�t�

� �t�S2�t�� , �21�

where ��t�=exp�−t /�c�.
When the relaxation time of the fluctuating field is short

compared to the time scale of magnetization dynamics, the
LLG-type equation in the presence of the spin-transfer
torque is obtained as

�tS2 +	 dSn̂ · J = �H � S2 +
�

S2
S2 � �tS2, �22�

where �=��c�VS2. By introducing the conventional form of
the spin-transfer torque,1 we obtain the following LLG-type
equation:

�tS2 −
I

e
g��S2 � S1� � S2 = �H � S2 +

�

S2
S2 � �tS2.

�23�

However, Eq. �23� is valid only when �c�1 / ��H�. As men-
tioned before, the torque represented by using the memory
function generally has a component parallel to the nonadia-
batic torque. In order to observe the effect of the nonadia-
batic torque induced by the memory function on the magne-
tization dynamics, we performed numerical simulation using
Eqs. �19� and �20�.

For the simulation, we used the following conditions: At
the initial time of t=0, we assumed that the magnetization of
the free layer is aligned parallel to the effective magnetic
field H and the angle between the magnetizations of the fixed
and the free layers is 45°. This arrangement corresponds to
the recent experiment on a magnetic tunnel junction
system.21 We also assumed that the fluctuation field has zero
mean value at t=0, i.e., �
H�0��=0.

In Fig. 2�a�, we plot the time dependence of the z com-
ponent of the magnetization of the free layer under the large
enough spin current to flip the magnetization of the free
layer, Ig�S2

2S1 / �e��H�=−10. The value of �c is varied and
the solid, dotted, and dot-dashed lines correspond to
�H�c=0.1, 1.0, and 10.0, respectively. As shown in Fig. 2�a�,
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the time required for the magnetization of the free layer to
flip decreases with increasing �c, which can be understood by
projecting the torque given by the last term of Eq. �21� ex-
pressed by a memory function. As shown in Fig. 2�b�, the
Gilbert damping component, �̂�t�, decreases from the value

0.01 in the limit of �c�1 / ��H� to zero as �c increases. The
Gilbert damping component delays spin-flip motion. By in-
creasing �c, �̂�t� decreases and the time required for S2 to flip
decreases. The nonadiabatic component, which is divided by
�H / �IS1� to make it nondimensional is also shown in Fig.
2�b�. �̂�t� is zero in the limit of �c�1 / ��H� and first in-
creases as �c increases. The largest nonadiabatic component
is found when �c�1 / ��H�. By further increasing �c, �̂�t� is
eliminated by cancellation of the contributions from the
memory at t− t��1 / ��H�.

In conclusion, we derived the equation for the motion of
magnetization in the presence of a spin current by using the
local equilibrium assumption in nonequilibrium thermody-
namics. We demonstrated that the value of the coefficient �
is not equal to that of the Gilbert damping constant � in
general. However, we also show that the equality �=� holds
if �c	1 / ��H�. We then applied our theory to current-
induced magnetization reversal in magnetic multilayers and
showed that the switching time is a decreasing function of �c.
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FIG. 2. �a� The z component of the magnetization S2 is plotted
against time for various values of �c. The initial direction of S2 lies
in the direction of the effective magnetic field, which is aligned to
the z axis. The initial angle between S1 and S2 is taken to be 45°.
The value of �=��c�sM is kept at 0.01. �b� The projections of
��
H��S2 in the direction of S2��tS2 ��̂�t�; thick lines� and
S2�S1 ��̂�t�; thin lines� are plotted against time during the period
of magnetization reversal.
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